
Semester project spring 2000

Optics Tutorials in Java

Olivier Scherler, Olivier Ripoll (supervisor)

IMT Neuchâtel, Prof. R.Dändliker

July the 7th, 2000

Abstract

A number of problems in optics are not always very easy to to understand using
only formulas and equations, hence the need of an alternate and more visual way
of representing some of those problems. A good solution is to have a set of com-
puter programs written to demonstrate interactively a given effect. This is why the
motivation of this semester work was to provide a base for such programs in order
to facilitate their creation. The work focuses on ray tracing because of the wide
range of effects visible using it.

CONTENTS iii

Contents

1 Introduction 1

1.1 The goal . 1

1.2 What is Java? . 1

1.3 Why Java? . 2

1.4 The limitations of Java . 2

2 The basics of the project 3

2.1 Ray tracing . 3

2.1.1 Sequential ray tracing . 3

2.1.2 Non-sequential ray tracing . 3

2.2 General mechanisms . 4

2.2.1 The coordinates system . 4

2.2.2 Elements . 4

2.2.3 Rays . 4

2.2.4 Materials . 4

2.3 OpticalElement . 5

2.4 OpticalDevice . 5

2.5 RayPoint . 6

2.6 Ray . 6

2.7 RayCaster . 6

2.8 Material . 7

2.9 Parameter . 7

3 Details of the program’s functionalities 8

3.1 Elements and devices . 8

3.2 Materials and parameters . 9

iv CONTENTS

3.3 Propagation . 10

3.4 Drawing . 10

3.5 Integration with AWT . 11

4 Using the program 12

4.1 The main objects . 13

4.2 The main window . 13

4.3 Construction of the OpticalDevice . 14

4.4 The control pane . 15

4.5 Interaction with the controls . 16

4.6 Additional features . 18

4.6.1 DeviceSwitcher . 18

4.6.2 Nothing . 18

5 The tutorials 19

5.1 Field lens . 19

5.2 Aspherical interface . 19

5.3 Achromat . 20

6 Outlook 24

7 A few remarks 25

8 Conclusion 25

9 Acknowledgements 25

A Equations used for refraction 26

B The aspherical interface 27

LIST OF FIGURES v

B.1 Equation of the surface . 27

B.2 Intersection of a RayPoint with the surface . 27

B.3 Normal vector to the surface at intersection . 28

C Refractive index formulas 28

C.1 Constant formula . 28

C.2 Schott formula . 28

C.3 Conrady formula . 29

C.4 Herzberger formula . 29

C.5 Sellmeier 1 formula . 29

C.6 Sellmeier 2 formula . 29

C.7 Sellmeier 3 formula . 30

C.8 Sellmeier 4 formula . 30

C.9 Handbook of Optics 1 formula . 30

C.10 Handbook of Optics 2 formula . 30

D Supporting new controls 31

List of Figures

1 The coordinates system . 4

2 Nesting of devices . 5

3 Types of RayCaster s . 6

4 Propagation . 10

5 Drawing . 11

6 Moving elements . 17

7 The field lens applet . 19

8 Problem with an off-axis source . 20

vi LIST OF TABLES

9 Effect of the field lens . 21

10 Spherical lens with aberrations . 22

11 Hyperbolic lens without aberrations . 22

12 Aberrations with a hyperbolic lens used off-axis . 23

13 Achromat with geometrical aberrations correction . 23

14 Refraction using Ewald spheres. 26

15 Aspherical surface. 27

List of Tables

1 OpticalElement properties . 8

2 OpticalElement methods . 8

3 OpticalDevice properties and methods . 9

4 Material methods . 9

5 RespondToEvents methods . 16

1

1 Introduction

1.1 The goal

The goal of this semester work was to find a way to facilitate the creation of computer programs used
to demonstrate some optics principles in an interactive way. Such tutorials are interesting because
they provide an alternative way of understanding a problem to the usual ’formulas only’ point of
view.

For this project, we focused on ray tracing, as this method can be used to demonstrate a variety of
problems, such as sphericity or chromaticity aberrations, using the same approach.

The requirements for the program were the following:

• The tutorials should be viewable on a variety of platforms, preferably through the internet, to
ensure an easy access for everyone. Additionally, the size of a program targeted for the internet
should be reasonably small;

• The code should be as reusable as possible, in order to minimize the amount of work to be done
to create a new tutorial;

• It should be easy to improve the program by implementing new features, without having to
revise the whole source code.

These requirements naturally led to the idea of using object oriented programming (OOP), and more
particularly the Java language. The details of the reasons are explained in section 1.3 below.

1.2 What is Java?

Java is a cross-platform, object oriented programming language developed by Sun Microsystems, Inc.
The particularity of this language is that it stands between a compiled and an interpreted language,
since the compiler produces byte code for a virtual machine, instead of byte code for a given platform
(i.e. the combination of the hardware and the operating system).

For each platform, an implementation of the virtual machine is written (usually either by the de-
veloper of the operating system or by the manufacturer of the hardware) which executes the byte
code and ’translates’ it into instructions understood by the underlying computer. In many ways,
it is similar to an emulator, but for a machine that never physically existed, hence the name virtual
machine.

The benefit of this approach is that only the virtual machine has to be written for a given platform,
and provided it is installed on a computer, any Java program will run on it, without the need of a re-
compilation or even a modification of the code, as usually needed for programs written in languages
like Pascal or C++.

2 1 INTRODUCTION

Another benefit is that a Java program can be either a standalone application, as any program usually
executed on a computer, or a particular kind of application, called applet, which is intended to be
executed inside of a web browser window. This solution is interesting, because it means that one can
create a web page containing, in addition to the applet, text and graphics to provide explanations or
background information.

On the drawbacks side, it is important to note that Java applications are slower than their platform
specific counterparts, and that the virtual machines used in modern web browsers are several gen-
erations behind the current release (usually Java version 1.1.x), forcing the programmer who wants
to create internet distributable applets to ignore the new features of the language and to only use the
backward compatible classes.

1.3 Why Java?

As said earlier, Java seemed to be the natural choice for this project for several reasons:

• Java’s syntax is similar to C++, but cleaner. As a matter of fact, C++ is more of an addition
to C implementing object oriented programming than a real new language, whereas Java is a
new language, intended to be object oriented from the beginning, and which got rid of all the
non OOP features of C++. This means that it’s easy to get started with Java. In fact, the harder
part is to understand the basics of object oriented programming, not to learn the syntax of the
language itself.

• Java is fully object oriented, which makes it possible to write reusable classes with the features
logically distributed along the class tree. Furthermore, the behaviours are encapsulated into
the classes, which allows someone else to use them without knowing the details of the internal
mechanisms.

• The tutorials created should be available to a maximum of users, ideally through the internet,
goal which is fully reached using Java applets.

1.4 The limitations of Java

The main drawback of Java is the speed issue. Java applications are run by the virtual machine,
which adds a step in the execution, slowing everything down a bit. Furthermore, the different virtual
machines are not equivalent in terms of speed, so the only safe way to write an application which
works well everywhere is to avoid processor intensive functions as much as possible.

Also, as said earlier, the virtual machines implemented into web browsers are rarely the latest ver-
sion, so the programmer should be careful not to use any Java 1.2 or older functions.

3

2 The basics of the project

2.1 Ray tracing

Ray tracing is often used to calculate the aberrations of an optical system. The system is composed of
reflective or refractive surfaces, and a number of rays are propagated through the system. The results
given by this approach are exact, but only for the rays that were traced, in opposition to aberration
theory, that gives only an approximation but for the whole system. In ray tracing, aberrations are not
calculated using a separate formula for each aberration type, but are a direct cause of the geometry
of the system.

2.1.1 Sequential ray tracing

In sequential ray tracing, the order in which the rays travel through the system is known in advance.
Every ray travels once through a given element and then through the next one, until it reaches the
end of the system.

This is a good way to simplify the calculations, because the propagation of a ray through a series of
elements limits itself to propagating the starting ray through the first element, then the resulting ray
through the second element, and so on...

This way, a ray can be split up into elementary parts — one for each element in the system — each
with its starting position and direction. The details will be discussed in section 2.2.

2.1.2 Non-sequential ray tracing

In non-sequential ray tracing, the system is described by a number of elements, and rays can travel
freely through it. For example, they can enter the same element several times or never. They can
even pass an element in a given direction and then being reflected and pass the same element in the
opposite direction.

Non-sequential ray tracing is much more complicated to implement, because at each step of the prop-
agation, one must figure out which element is the first one encountered, which means calculating the
intersection of the ray with every element in the system, in opposition to finding the intersection with
the current element in sequential ray tracing.

For further details about ray tracing, see [1] and [2]

4 2 THE BASICS OF THE PROJECT

2.2 General mechanisms

2.2.1 The coordinates system

Since we are going to draw on a computer screen, it is easier to stick with the usual coordinates
system on such a device, i.e. x horizontally and towards the right and y vertically and down. Using
x instead of z for the optical axis seems natural in our case. However, it would be a good idea to
prepare everything to work in three dimensions — even if it’s not used in the first version — to make
it easier to implement later. That’s why we added a z coordinate, horizontally and away from the
user (figure 1).

y

z

x

Figure 1: The coordinates system

2.2.2 Elements

To implement sequential ray tracing, it was first necessary to decide of the basic properties of a
system. We found that the more convenient way was to define a system as a sequence of elements,
which can either be thin or have a finite width, and with no space between them. Therefore, we
build a complete system by creating the elements in the correct order, and each new element gets
automatically positioned at the end of the system.

2.2.3 Rays

Since we are using sequential ray tracing, we can easily split a ray traveling through the system into
elementary parts we called RayPoint. A ray has the same number of raypoints as there are elements
in the system. Each element takes the last raypoint in the ray, calculates its corresponding outgoing
raypoint and adds it to the end of the ray. The details of this mechanism are given in section 3.3.

2.2.4 Materials

In order to be able to demonstrate effects such as chromatic aberrations, it was necessary to im-
plement the dispersion of the refractive index depending on the wavelength. For this purpose, we
created a set of classes that deal with optical materials. It is possible to define a material using the

2.3 OpticalElement 5

formulas used in Zemax (and summarized in appendix C) to calculate the refractive index corre-
sponding to a given wavelength.

2.3 OpticalElement

It was clear from the beginning that it would be convenient to have a base class, parent of every
element type, that would define all the standard attributes of an element, such as its position and
dimensions, as well as the ’external behavior’, i.e. the functions common to every element that take
care of drawing the element, and propagating the rays through it. This class was named Opti-
calElement .

Of course, for each new element type, the programmer should override these functions to implement
the element’s actual behavior. Since the base class should not be used as an actual element, but only
as a canvas, it was natural to declare it as abstract, forcing the child classes to define the core functions
necessary to the program.

2.4 OpticalDevice

The OpticalDevice class was written to allow the creation of complex elements that behave like
any other element. It is no more than a container of OpticalElement s, with modified functions for
drawing and propagation that passes the correct parameters to the corresponding function of each
of its components.

The interesting point with this class is that it is a child of OpticalElement , which means that,
depending on the context, it can be considered as an OpticalElement . This opens a number of
possibilities because it implies that an OpticalDevice can be nested into another OpticalDevice
as if it were a normal element, allowing us to build very complex structures using a number of simple
’blocks’ (figure 2).

Figure 2: Nesting of devices: Both of the lenses are OpticalDevice s composed of two spherical
interfaces.

Another advantage is that by subclassing OpticalDevice , it is easy to create a new kind of element
that is defined by a combination of already existing elements (e.g. a thick lens is made of two spheri-
cal interfaces with glass between them), without having to define its behavior. The only thing to add

6 2 THE BASICS OF THE PROJECT

is the code that builds the element list at the creation of the device. Everything else is taken care of
by the components. The class ThickLens is an example of this feature.

2.5 RayPoint

Class RayPoint implements the elementary part of a ray. A list of RayPoint s is stored in an instance
of class Ray. Each RayPoint defines its position, wave vector ~k and wavelength, along with other
properties already implemented but not yet used such as amplitude, phase or polarization.

Every time an element is reached a new RayPoint is added to the Ray, containing its new properties
such as direction or existence. Each element uses the last RayPoint in the Ray to calculate how its
properties will be affected.

2.6 Ray

Class Ray is a very simple one. It is basically a dynamic array of RayPoint s, with methods to access
them and to set global properties. The interesting properties of rays are defined in class RayPoint ,
discussed previously.

2.7 RayCaster

A RayCaster is a source of light. Its purpose is to create a number of rays to be propagated through
the system. RayCaster must be subclassed to define a given kind of source, such as a number of
parallel rays or rays that all start from the same point.

Four classes were already written to provide useful sources, but it is easy to create new ones by
subclassing RayCaster .

(a) (b) (c)

Figure 3: Three types of RayCaster s: (a) ParallelRays, (b) PointSource, (c) ThreeRays.

ParallelRays (figure 3-a) Creates n parallel rays distributed along a given width. The direction can
be chosen freely.

PointSource (figure 3-b) Given a starting point and two directions ~k1 and ~k2, this source creates n
rays with directions distributed between ~k1 and ~k2.

2.8 Material 7

ThreeRays (figure 3-c) Creates three rays starting from the same point. One is horizontal and the
other two go in the direction of two given points. It can be used to create the three basic rays
going through a lens, a horizontal one, one going through the center of the lens and one through
the focal point.

RayCastersCollection An array of RayCaster s. Can be used to create more than one source to
propagate through the same system, such as two sets of rays with different wavelengths.

2.8 Material

Class Material makes it possible to create a material and assign one or more sets of parameters, de-
pending on the formulas used for index calculation. The available formulas are listed in appendix C.

2.9 Parameter

Class Parameter is an abstract class providing the interface needed to communicate with class Ma-
terial . Classes like ConstantParameter or SchottParameters are child classes of Parame-
ter . Such classes implement the formula used to calculate the wavelength, as well as the necessary
parameters.

Typically, an instance of a Parameter child class is created to store the parameters for the desired
formula. Then the Material object is created, using the Parameter object, and can be used in the
creation of an element such as an aspherical interface or a thick lens.

8 3 DETAILS OF THE PROGRAM’S FUNCTIONALITIES

3 Details of the program’s functionalities

3.1 Elements and devices

The OpticalElement class defines the basic properties and behaviors shared between all the ele-
ments. The properties are mainly the position and size of the element. Due to the particular way of
building a system by aligning each element on the optical axis and next to the previous one1, these
properties are defined in a slightly unusual way. Table 1 shows them along with a short description.

x The position in direction x . It is usually automatically ad-
justed to the end of the previous element.

axis_y, axis_z The position of the optical axis. Usually the same for each
element in a system.

offaxis_y, offaxis_z The position of the element relative to the optical axis. Both
default to zero, meaning the element is centered on the axis.
These variables are used to move an element off-axis.

width The size in direction x of the element. Determines where
the next element will be placed.

Table 1: OpticalElement properties

Note: One can see that only the width of the element is defined in class OpticalElement . It is
because size in other directions is not always needed. For example a lens will have an aperture
radius, whereas an homogeneous medium will have no defined dimension in directions y and z .

Table 2 shows the methods implementing the basic behaviors of an element.

MoveAxis, MoveOnAxis Used to set the x , axis_y and axis_z properties of the el-
ement. Because of the automatic placement of the elements
next to each other and on the optical axis, these methods
should not be used outside of the class and should be de-
clared protected or private in a next version of the pro-
gram.

MoveOffAxis Used to set the offaxis_y and offaxis_z properties
of the element. This method should be used instead of
MoveAxis to move the center of an element off axis.

Propagate,
PropagateRayPoint,

PropagateRayPointSelf

Used to propagate a Ray or a RayPoint through the ele-
ment. These methods are discussed in details in section 3.3.

Draw, DrawSelf, DrawRay Used to draw the element and the rays traveling through it
on the screen. Discussed in details in section 3.4

Table 2: OpticalElement methods

1This is not a limitation of the propagation algorithm but a choice made to facilitate the construction of a system. In a
future version of the program, the way of building a system can be modified, without having to rewrite the propagation
related code.

3.2 Materials and parameters 9

There are also a variety of accessor functions used to get the value of different properties. They are
not described here, see the source code for reference.

The OpticalDevice class is a child of OpticalElement , and therefore inherits its properties and
behaviours. However, in order to be useful, it must add new features. They are listed in table 3.

elements (Vector) The list of all the components of the device. A Vector is a
dynamic array that holds any kind of objects. Since every
object we store is a child of OpticalElement which de-
clares all the methods we need, we don’t need to know the
real class of each element of this vector. Java takes care of
this at runtime.

Draw, DrawRay, Propagate These methods are overridden by class OpticalDevice .
The three of them work using the same mechanism: they
call the method of the same name for each of the compo-
nents of the device.

Append This method adds an OpticalElement at the end of the
components list. It is used to build the device, element by
element.

Rearrange This method is used to arrange all the components in the
OpticalDevice in order to align them on the same axis
and to put them next to each other in direction x . When a
device is built, all the elements are first added to the compo-
nents list using Append , and then a call to Rearrange puts
everything in place. The mechanism behind Rearrange is
recursive, which means that if a device is included into an-
other device, it gets rearranged too.

Table 3: OpticalDevice properties and methods

3.2 Materials and parameters

Table 4 lists the most useful methods of class Material . For a list of the Parameter classes, see
appendix C.

AddParameterSet Adds an instance of a child class of Parameter to use as a
formula for the material.

SetDefaultParameter Used to choose the default formula to be used when calcu-
lating the refraction index.

IndexAtWavelength Returns the refraction index from the given wavelength, us-
ing the default formula or the formula given as an optional
parameter.

Table 4: Material methods

10 3 DETAILS OF THE PROGRAM’S FUNCTIONALITIES

3.3 Propagation

This section describes the propagation of a ray through the system. First, an instance of a RayCaster
child class creates the rays, each of which contains only one RayPoint giving the ray’s initial po-
sition, direction, etc. Then the Propagate method is called successively for each element in the
system. The three steps of propagation are described below:

1. Propagate takes the last RayPoint in the Ray, passes it to PropagateRayPoint and ap-
pends the result to the ray.

2. PropagateRayPoint duplicates the RayPoint and translates it relative to the current ele-
ment. It then calls PropagateRayPointSelf and returns the result.

3. PropagateRayPointSelf calculates the path of the RayPoint . It moves it to the last loca-
tion where any of its properties were modified, and returns it to PropagateRayPoint .

At any time, an element can decide that the ray will be stopped — for example when the ray falls
outside the element, or in case of total reflection — by calling Invalidate . The ray will still exist,
but won’t be propagated further.

The translation of the coordinates system performed by PropagateRayPoint moves the center of
the element to the origin. The center is an arbitrary point where it is convenient to have the origin
for the calculations. The default location is at the far left of the element on the optical axis, but it
can be redefined as needed by overriding method GetCenter . Figure 4 illustrates the propagation
mechanism.

Figure 4: Each circle is the starting point of a RayPoint . The arrow shows its direction. Each element
creates a new RayPoint when it changes any property of the ray. The bottom ray is invalidated by
the third element and doesn’t propagate further.

3.4 Drawing

Drawing takes place into two steps: displaying the element symbol and tracing the rays. The symbol
is displayed using the Draw method, which translates the coordinates system — as for propagation —
and calls DrawSelf . Elements override DrawSelf to define how their symbol will be plotted.

3.5 Integration with AWT 11

Tracing the rays is a bit different. Each element draws the RayPoint it propagated, i.e. from the
previous element’s last modification to the current element’s last modification. Because of the ability
to nest devices, a numeric marker is passed as a parameter to the DrawRay method, in order to keep
track of which RayPoint should be traced. Each element increments the marker by 1, meaning that
when a device draws a part of a ray, the marker is incremented by the number of elements in the
device.

There is no limit on how a RayPoint is traced. It is usually just a straight line, but for example
a graded index fiber would plot a sine, which is one RayPoint and not a succession of straight
RayPoint s used to approximate the sine. Figure 5 illustrates the drawing mechanism.

Figure 5: The fiber traces the ray from the lens to its output (dotted line), where the next raypoint is
created. The sinusoidal path is defined by the drawing method of the fiber, not by a large number of
raypoints approximating it.

3.5 Integration with AWT

The Abstract Window Toolkit (AWT) is a set of standard Java classes used to provide graphical user
interface capabilities to an application. It contains definitions for the usual controls, as well as more
basic classes that can be extended to draw into a window, such as Graphics or Canvas .

We wrote a set of classes based on AWT to create a bridge between it and our program. These classes
are OpticalCanvas , OpticalControl and RespondToEvents . OpticalCanvas is a child of
AWT class Canvas and is used to actually draw the system in the window, and OpticalControl
is a child of Panel that collects events sent by the controls it contains and sends them to the main
application. RespondToEvents is an interface class used in OpticalApp that declares the callback
functions that respond to events sent by OpticalControl .

12 4 USING THE PROGRAM

4 Using the program

The program is divided into a number of Java packages, which are listed below:

• Optical

– Elements: OpticalElement , OpticalDevice and all the elements already defined.

– Gui: Graphical User Interface. A number of classes used to integrate a system into a AWT
application.

– Materials: Material , Parameter and all the Parameter child classes.

– Rays: Ray, RayPoint , RayCaster and all the RayCaster child classes.

• Utils: different utility classes.

To prepare a new project, both the Optical and Utils packages should be included. Then a new class
should be created, child of OpticalApp . The following piece of code shows the structure of the file:

import java.awt.*;

import Optical.Elements.*;
import Optical.Rays.*;
import Optical.Materials.*;
import Optical.Gui.*;
import Utils.*;

public class MyApp extends OpticalApp
{

...
}

The development of a typical application can be separated into five steps, each of which will be
described here with a simple example. We are going to write an applet with a point source on the
optical axis, two thin lenses we can move and a screen to end the system. The five steps are the
following:

1. Declaration of the main objects;

2. Building of the main window layout;

3. Building of the OpticalDevice object describing the system;

4. Building of the control pane;

5. Definition of the interactions between the controls and the device.

4.1 The main objects 13

4.1 The main objects

The application class should declare the main object to be used in the tutorial:

• An OpticalCanvas , where the system will be displayed;

• An OpticalControl , to provide the user interface;

• An OpticalDevice to build the system;

• A RayCaster child, to provide the rays to trace.

Once declared, these objects are ready to be created in the next steps.

4.2 The main window

The code below shows an example of the init function of an applet. Functions BuildDevice and
BuildControls are discussed in the next sections. We can see here that a new BorderLayout is
created, and that the canvas and the controls are added to it, the canvas to the center, and the controls
below.

public class MyApp extends OpticalApp
{

OpticalCanvas canvas;
OpticalControl controls;
OpticalDevice device;
RayCaster rays;

public void init()
{

setLayout(new BorderLayout());

canvas = new OpticalCanvas();
BuildDevice();
canvas.SetDevice(device);

rays = new ParallelRays(
new FPoint(20.0, 80.0, 0.0),
new FPoint(1.0, 0.0, 0.0),
5,
100.0,
0.6328,
Vaccum);

canvas.SetRayCaster(rays);

14 4 USING THE PROGRAM

add("Center", canvas);
controls = new OpticalControl(this);
BuildControls();
add("South", controls);

}
...

}

The application class is given as a parameter for the OpticalControl constructor, because we
want the application to respond to the events generated by the controls inside the OpticalControl
object.

4.3 Construction of the OpticalDevice

To build the device, we create the OpticalDevice object and place it at the right place on the screen.
Then we build the elements and add them to the device. Finally, we call Rearrange and pass the
device to the canvas previously created using SetDevice .

double lens1Position = 100.0, lens1FocalLength = 100.0,
lensDistance = 100.0, lens2FocalLength = 100.0,
lens1Aperture = 80.0, lens2Aperture = 80.0,
screenDistance = 200.0, screensize = 100.0,
totalDistance = lens1Position + lensDistance + screenDistance;

public void BuildDevice()
{

Material vacuum;

vacuum = new Material("Vacuum", new ConstantParameter(1.0));

device = new OpticalDevice();
device.MoveAxis(150, 0);

// definition of the elements
h1 = new Homogeneous(lens1Position, vacuum);
lens1 = new SimpleLens(lens1FocalLength, lens1Aperture);
h2 = new Homogeneous(lensDistance, vacuum);
lens2 = new SimpleLens(lens2FocalLength, lens2Aperture);
h3 = new Homogeneous(screenDistance, vacuum);
screen = new Screen(screensize, screensize);

// appending them to the system
device.Append(h1);

4.4 The control pane 15

device.Append(lens1);
device.Append(h2);
device.Append(lens2);
device.Append(h3);
device.Append(screen);

device.Rearrange();
}

Comments on the above example:

• The elements are declared in the class body, to allow us to access them from the other methods
in order to be able to modify the device in answer to user input.

• After creation, the device is placed where we want it on the screen using MoveAxis .

• Material vacuum is created using a ConstantParameter that gives a refractive index of 1.0
regardless of the wavelength.

• Elements of class Homogeneous define the distance and medium between the other elements.
The constructor takes the width and the material for the element.

• Class SimpleLens implements a thin, paraxial lens of a given focal length and aperture.

• Append is called for each element in the order we want them in the device.

• Class Screen is used to finish the device. If we forget it, rays will be traced to the beginning of
the last element (h3) and will stop there, at the location of the second lens.

• Never forget to call Rearrange after building the device, or you’ll end up with a strange
placement of the elements.

4.4 The control pane

The controls are created as usual with AWT, the only difference being that they are added to an
OpticalControl object, which is also the listener for all the controls. When an event is sent, the
OpticalControl object forwards it to the application class. We will see in next section how to react
to these events.

public void BuildControls()
{

controls.setLayout(null);
controls.setSize(250, 80);

sb11 = new Scrollbar(
Scrollbar.HORIZONTAL,

16 4 USING THE PROGRAM

(int)lens1Position, // initial
1, // thumb
0, // min
(int)(lens1Position + lensDistance) // max
);

sb11.setName("lens1Pos");
sb11.addAdjustmentListener(controls);
controls.add(sb11);
sb11.setBounds(0, 0, 200, 20);

sb12 = new Scrollbar(
Scrollbar.HORIZONTAL,
(int)lensDistance, // initial
1, // thumb
0, // min
(int)(lensDistance + screenDistance) // max
);

sb12.setName("lens2Pos");
sb12.addAdjustmentListener(controls);
controls.add(sb12);
sb12.setBounds(0, 40, 200, 20);

}

4.5 Interaction with the controls

Class OpticalApp implements RespondToEvents , which is an interface class that declares the
methods where the event processing will be performed. In OpticalApp , these methods are empty.
Therefore the child class should override them as needed. Table 5 lists the existing functions. Sup-
porting other controls is fairly easy and is described in appendix D.

Scrollbar Called when a scrollbar changes value. Parameters are a
String containing the name of the scrollbar for identifica-
tion, and an int with the new value.

Button Called when a button is clicked, with the label of the button
as parameter.

Checkbox Called when a checkbox changes its value. Parameters are
the name and the new value (as boolean) of the checkbox.

Table 5: RespondToEvents methods

Basically, the procedure is to override the methods corresponding to the controls used in the appli-
cation, check the name of the control that fired the event, and act on the device accordingly. Below is
an example with the Scrollbar method:

4.5 Interaction with the controls 17

public void Scrollbar(String name, int value)
{

if(name.equals("lens1Pos"))
{

h1.SetWidth(value);
h2.SetWidth(totalDistance - (int)h1.GetWidth()

- (int)h3.GetWidth());
sb12.setMaximum((int)h2.GetWidth() + (int)h3.GetWidth());
sb12.setValue((int)h2.GetWidth());
dev.Rearrange();

}
else if(name.equals("lens2Pos"))
{

h2.SetWidth(value);
h3.SetWidth(totalDistance - (int)h1.GetWidth()

- (int)h2.GetWidth());
sb11.setMaximum((int)h1.GetWidth() + (int)h2.GetWidth());
sb11.setValue((int)h1.GetWidth());
dev.Rearrange();

}
canvas.ForceRedraw();

}

There is an important thing to note here. To move elements along the axis, we cannot call their
MoveOnAxis method, because elements are always supposed to touch each other. So if we move an
element, we must adjust the width and position of the other elements as well. However, when we
call Rearrange , the position of every element is adjusted automatically to ensure they are touching
each other, so in order to move an object, we should change the width of other elements instead.

h1 h2 h3h1 h2 h3

(a)

(b)

(c)

(d)

Figure 6: Moving elements

A real life example will illustrate the process more clearly. In the program we are building, we have
two lenses and a screen, separated with three Homogeneous elements we called h1 , h2 and h3 . h1

18 4 USING THE PROGRAM

is before the first lens, h2 between the two lenses, and h3 between the second lens and the screen
(figure 6-a).

Let’s suppose we want to move the first lens 30 pixels2 to the right. We can add 30 pixels to the width
of h1 and remove them from the width of h2 and the desired effect will be achieved (figure 6-b). Now
if we want to move the second lens 20 pixels to the left, we remove 20 pixels to the width of h2 and
add them to the width of h3 (figure 6-c). Of course, we have to call Rearrange for the modification
to take effect. Afterwards, we call ForceRedraw to refresh the display.

In both cases, the screen doesn’t move, since the width we added somewhere was removed else-
where, so we didn’t change the total width of the system. To move both lenses together while keeping
the same distance between them, all we have to do is resize h1 and h3 accordingly (figure 6-d).

Of course, we don’t need to keep the screen where it is if we don’t want to. If we change the width
of h3 alone, we are able to move the screen only.

4.6 Additional features

4.6.1 DeviceSwitcher

DeviceSwitcher is a special kind of device, used to switch between two or more alternate config-
urations for a device. For example, let’s imagine we want to demonstrate the differences between a
paraxial lens and a real lens. We create both of them, but instead of adding them to the main device,
we put them into a DeviceSwitcher which is added to the system. With a control, we can make
the DeviceSwitcher display either of the lens in alternance, and if the lens share the same focal
length, we have a very nice demonstration of geometrical aberrations.

DeviceSwitcher is very simple to use. Method AddDevice takes an OpticalElement and a
string containing its name, and adds it to the list of the available elements to switch. SetCurrent-
Device switches to the element of a given name. There is no limit to the number of different elements
that a DeviceSwitcher can contain.

4.6.2 Nothing

Nothing is an element that does nothing. It has no width, and its only effect is to add a RayPoint
to the rays going through it. It can be used for two purposes: To replace another thin element in a
DeviceSwitcher — as seen in the field lens tutorial (section 5.1) where a thin lens can be switched
with a Nothing element for comparison — and to take a ’slice’ of the rays at a given location in the
system, to have access to the RayPoint s there.

2Although the distances in this version of the program are expressed in pixels, it does not mean that they have to be
integer numbers. Distances are stored as doubles and are only rounded when the system is displayed. At the time being,
there is a 1:1 correspondence between one unit of distance and a pixel on the screen, but it would be easy to extend the
program to support a change of scale.

19

5 The tutorials

5.1 Field lens

Figure 7: The field lens applet

The Field lens tutorial illustrates the effect of a field lens in a telecentric system. Both lenses have the
same focal length f and are separated by a distance of 4f . An object at a distance of 2f from the
first lens is imaged 2f after the second lens (figure 7). However, since the lens has an aperture, if the
object is not centered on the optical axis, some of the energy passing the first lens is lost when the
second is encountered. This can be seen on figure 8, where some of the rays are lost outside of the
second lens.

This is where the field lens is useful. Placed between the two lenses and with the same focal length
f , it images the aperture of the first lens onto the aperture of the second one and all the light passing
the first lens goes through the second one as well. This can be seen on figure 9, where all the rays
pass the three lenses.

Such a setup can be used for photolithography (Microlens Projection Lithography), although with a
few modifications. The lenses are replaced with microlens arrays, and two arrays are combined to be
used as a field lens array [3].

5.2 Aspherical interface

It is well known that spherical lenses are not perfect. Sphericity aberrations begin to appear when a
lens is used too far away from its axis. This effect is easily seen on figure 10: rays close to the axis
focalize normally, but the other rays fall elsewhere, and we cannot speak of focalization anymore.

A good way of correcting these aberrations is to use an aspherical lens. The mathematical aspect of

20 5 THE TUTORIALS

Figure 8: Problem with an off-axis source

the surface used is discussed in appendix B. Such a surface is defined with its curvature C and an
asphericity factor K. The different values of K and the surface obtained are listed below:

K > 0 Ellipse
K = 0 Sphere

−1 < K < 0 Ellipse
K = −1 Parabole
K < −1 Hyperbole

In our case, a hyperbolic interface with K = −(n1/n2)2 where n1 and n2 are the refractive indexes of
the mediums before respectively after the interface give a perfect focalization (figure 11). However,
the tutorial makes it possible to see that as soon as the incident rays are not parallel to the axis, the
effect can be catastrophic (figure 12). This is one of the reasons why spherical lenses are still used,
because their aberrations are almost constant, even when the direction of the incident rays change,
the other reason being that aspherical lenses are expensive to manufacture.

5.3 Achromat

The achromat is a combination of two lenses used to correct chromaticity and sphericity aberrations.
The first lens is made of a not very dispersive glass (such as BK7), and the other of a highly dispersive
one (such as F2). When the curvature radii of the lenses are chosen correctly, the focal length of the
achromat is the same for red and blue light, although rays take different paths inside of the lens. The
equations used to obtain the radii are the following (see figure 13):

5.3 Achromat 21

Figure 9: Effect of the field lens

1
f1d

= (n1d − 1)
(

1
r1

− 1
r2

)
(1)

1
f2d

= (n2d − 1)
(

1
r2

− 1
r3

)
(2)

where

f1d : the focal length of the first lens for wavelength λd

f2d : the focal length of the second lens for wavelength λd

n1d : the refractive index of the first glass for wavelength λd

n2d : the refractive index of the second glass for wavelength λd

λd = 587.6 nm

These equations give a relation between r1, r2 and r3. We can choose, for example, r3, and calculate
r1 and r2. The tutorial shows the effect of the achromat, and allows the user to change r3 (r1 and r2

are adjusted automatically in consequence) to try to correct spherical aberrations. It is visible that the
best configuration is when the curvature is distributed evenly between the three interfaces, as shown
on figure 13.

For the program, we used two materials that does not exist, but that we created using the Conrady
parameters to exaggerate the effect of chromaticity aberrations, in order to make them visible in the
program.

22 5 THE TUTORIALS

Figure 10: Spherical lens with aberrations

Figure 11: Hyperbolic lens without aberrations

5.3 Achromat 23

Figure 12: Aberrations with a hyperbolic lens used off-axis

Figure 13: Achromat with geometrical aberrations correction

24 6 OUTLOOK

6 Outlook

While developing the program, we thought of a number of improvements that we decided not to
implement right away. They are mentioned in this section to serve as a source of ideas for anyone
wanting to work with this program.

• Although the display takes place only in two dimensions, the propagation algorithm has every-
thing prepared for three dimensions. The properties are present in elements and rays and most
of the propagation methods already take them into account. For the other, the z component
was set to zero to avoid surprises but the equations should be correct.

• A number of properties could be added to rays, to make it possible to illustrate new problems
and solutions. For example, amplitude and phase, or polarization.

• New elements could be added, either as combinations of existing elements or as completely
new ones. For example, a special kind of device could be written to create matrices of other
elements.

• At the time being, the program’s internal coordinates system is tightly bound to the usual co-
ordinates system on a computer screen. It would be interesting to completely separate both
systems, to allow things such as 3D rotation or zooming.

• The program could display more than a side view of the system. For example a picture of the
rays reaching the screen or a cut of the system.

• Devices, the way they are built, force their components to touch each other. However, it is not
a limitation in the propagation algorithm. A good idea would be to redefine the way devices
are constructed, to allow a more intuitive building of systems.

• It could be interesting if material and device definitions could be read from a file on the hard
drive, instead of being ’hard coded’ into the program. Such a feature would simplify the cre-
ation of a system, and could even lead to the development of an editor.

• A class providing mouse input functionalities, in order to be able to move elements directly by
clicking on them would greatly reduce the number of controls needed for a given program.

25

7 A few remarks

• The program is released under the GNU General Public License (GPL). For more information
about GPL, see [4].

• The amount of code written for this program can seem big. As a matter of fact, for a simple
system, the code would be much more compact if it were written from scratch for this specific
application. However, it would then be very difficult to make the program evolve (like by
adding a second lens to a single lens system) without rewriting everything. In opposition,
the classes written for this semester work allow the programmer to build a modular system
without having to revise the whole code at each modification, and the code that must actually
be written to make an application is very reduced considering the possibilities offered by what
was already written.

• The algorithm used for ray tracing is not paraxial. However, paraxial elements can be imple-
mented. An example of this is class SimpleLens which implements a lens using paraxial laws
for propagation.

• It is possible to propagate rays without having to draw them. This can be used to obtain a
spot function for example, by calculating the final position fo a great number of rays, without
having to display them on screen. One can imagine a reduced set of rays used to display in the
system, and another set used to calculate the spot function.

8 Conclusion

We wrote a set of Java classes allowing anyone with some programming knowledge to create in-
teractive optics tutorials based on ray tracing. The classes can be easily extended to provide more
functionalities, either at the user interface level or at the optical level.

This work combined learning of the Java programming language and learning of many optical sub-
jects. It was very interesting to have to deal with both the optical and the programming problems at
the same time, even if it was sometimes difficult to find a good compromise between correct func-
tionality and program complexity. There are still lots of improvements that can be made but the base
is laid and I think the goal is achieved.

9 Acknowledgements

I wish to thank my assistant Olivier Ripoll, whose support was invaluable. Without him, I would
have missed many good ideas, and many problems in the conception of the program would have
been discovered too late to be easily solved. His help with problems in optics was essential too.
I also wish to thank my friends Stephan, Johann and Charlotte, who always supported me, bearing
with my temper when everything went the wrong way and always listening to me even when talking
of the most specific and boring detail, which helped me a lot to clarify my thoughts.

26 A EQUATIONS USED FOR REFRACTION

A Equations used for refraction

Figure 14 shows refraction calculated using the Ewald spheres. It is easy to see that between ~k1 and
~k2, only the component in the direction normal to the surface changes, and the amount of the change
can be easily calculated using the Snell law.

k1
k1 k2

k2

n1

n2

Figure 14: Refraction using Ewald spheres.

k1 sin θ1 = k2 sin θ2 (3)

This leads to the conclusion that all we have to do in order to find the wave vector after refraction is to
add a carefully chosen multiple of the normal vector to the incident ray, multiple which is calculated
using the Snell law.

The following parameters are needed before we can calculate the direction of the refracted ray:

• the wave vector of the incident ray ~k1;

• the wavelength of the incident ray λ;

• the index of refraction n2(λ) of the second material, depending of the wavelength;

• the coordinates ~r2 of the intersection of the ray with the interface;

• the normal vector ~n to the surface at the location of the intersection.

Then the following equations give the wave vector of the refracted ray ~k2:

k2 =
2πn(λ)

λ
(4)

~k2 = ~k1 + µ~n

aµ2 + bµ + c = 0

27

with

a = ||~n||2

b = 2~k1.~n

c = k2
1 − k2

2 (5)

B The aspherical interface

B.1 Equation of the surface

The equation describing the aspherical interface — adjusted to our coordinates system as shown on
figure 15 — is the following:

x = − C(y2 + z2)
1 +

√
1 − C2(K + 1)(y2 + z2)

(6)

Note: This is only one of the possible equations one can use to describe an aspherical surface.

x

y,z

C > 0

Figure 15: Aspherical surface.

B.2 Intersection of a RayPoint with the surface

The RayPoint is given by its position ~r1 and wave vector ~k1. The intersection is called ~r2.

~r2 = ~r1 + µ~k1 (7)

aµ2 + bµ + c = 0

28 C REFRACTIVE INDEX FORMULAS

with

a = −C
(
(K + 1)k2

1x + k2
1y + k2

1z

)
b = −2C ((K + 1)k1xr1x + k1yr1y + k1zr1z) − 2k1x

c = −C
(
(K + 1)r2

1x + r2
1y + r2

1z

)
− 2r1x (8)

B.3 Normal vector to the surface at intersection

A normal vector to the surface is given by the following equations:

nx = −1

ny = − Cr2y√
1 − C2(K + 1)(r2

2y + r2
2z)

nz = − Cr2z√
1 − C2(K + 1)(r2

2y + r2
2z)

(9)

C Refractive index formulas

Following are the formulas used to calculate the refractive index of a material depending of the
wavelength, taken from the Zemax manual [5] and the Handbook of Optics [6]. The name of the
corresponding child class of Parameter is also given.

Important note: For these formulas to work with the parameters given in Zemax, the wavelength
must be expressed in micrometers.

C.1 Constant formula

Name in Material table: Constant
Name of class: ConstantParameter
Parameters: n0

Formula:

n = n0

C.2 Schott formula

Name in Material table: Schott
Name of class: SchottParameters

C.3 Conrady formula 29

Parameters: a0, a1, a2, a3, a4, a5

Formula:

n2 = a0 + a1λ
2 + a2λ

−2 + a3λ
−4 + a4λ

−6 + a5λ
−8

C.3 Conrady formula

Name in Material table: Conrady
Name of class: ConradyParameters
Parameters: n0, A, B
Formula:

n = n0 +
A

λ
+

B

λ3.5

C.4 Herzberger formula

Name in Material table: Herzberger
Name of class: HerzbergerParameters
Parameters: λ0, A, B,C,D,E, F
Formula:

λ2
0 = 0.028

L =
1

λ2 − λ0

n = A + BL + CL2 + Dλ2 + Eλ4 + Fλ6

C.5 Sellmeier 1 formula

Name in Material table: Sellmeier1
Name of class: Sellmeier1Parameters
Parameters: K1, L1,K2, L2,K3, L3

Formula:

n2 − 1 =
K1λ

2

λ2 − L1
+

K2λ
2

λ2 − L2
+

K3λ
2

λ2 − L3

C.6 Sellmeier 2 formula

Name in Material table: Sellmeier2
Name of class: Sellmeier2Parameters

30 C REFRACTIVE INDEX FORMULAS

Parameters: A, b1, λ1, b2, λ2

Formula:

n2 − 1 = A +
b1λ

2

λ2 − λ2
1

+
b2λ

2

λ2 − λ2
2

C.7 Sellmeier 3 formula

Name in Material table: Sellmeier3
Name of class: Sellmeier3Parameters
Parameters: K1, L1,K2, L2,K3, L3,K4, L4

Formula:

n2 − 1 =
K1λ

2

λ2 − L1
+

K2λ
2

λ2 − L2
+

K3λ
2

λ2 − L3
+

K4λ
2

λ2 − L4

C.8 Sellmeier 4 formula

Name in Material table: Sellmeier4
Name of class: Sellmeier4Parameters
Parameters: A,B, C, D, E
Formula:

n2 = A +
Bλ2

λ2 − C
+

Dλ2

λ2 − E

C.9 Handbook of Optics 1 formula

Name in Material table: HoO1
Name of class: HoO1Parameters
Parameters: A,B, C, D
Formula:

n2 = A +
B

λ2 − C
− Dλ2

C.10 Handbook of Optics 2 formula

Name in Material table: HoO2
Name of class: HoO2Parameters
Parameters: A,B, C, D
Formula:

n2 = A +
Bλ2

λ2 − C
− Dλ2

31

D Supporting new controls

Extending classes OpticalControl and RespondToEvents in order to support other control types
is fairly easy.

The first thing to do is to make OpticalControl a listener to the kind of events sent by the new con-
trol. This is done by adding the corresponding listener interface to the class’ implements list. The
following example shows how check box support would be added (although it is already present):

public class OpticalControl extends Panel
implements AdjustmentListener, ActionListener, ItemListener

{
...

}

ItemListener is the interface class that listens to check box events. The listening method must be
added:

public void itemStateChanged(newEvent e)
{

if(e.getItemSelectable() instanceof Checkbox)
resp.Checkbox(((Checkbox)e.getItemSelectable()).getName(),
(e.getStateChange() == ItemEvent.SELECTED));

}

The CheckBox method must then be declared in class RespondToEvents :

public void Checkbox(String name, boolean value);

Finally, an empty CheckBox method must be defined in class OpticalApp or the user will be forced
to define it in his own application class even if he does not use the new control:

public void Checkbox(String name, boolean value)
{
}

32 REFERENCES

References

[1] J. M. Teijido, "Conception and design of illumination light pipes," Université de Neuchâtel, 2000.

[2] V. N. Mahajan, "Optical imaging and aberrations," SPIE Optical Engineering Press, 1998.

[3] R. Völkel, H.-P. Herzig, P. Nussbaum, R. Dändliker, W. B. Hugle, "Microlens array imaging
system for photolithography," Opt. Eng. 35(11) 3323–3330 (November 1996).

[4] "GNU General Public License", http://www.gnu.org/copyleft/gpl.html .

[5] "Zemax User’s Guide, Version 8.0," Focus Software, Inc.

[6] M. Bass (ed.), Optical Society of America, "Handbook of Optics, second edition", McGraw-Hill,
1995.

http://www.gnu.org/copyleft/gpl.html

	Title
	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	The goal
	What is Java?
	Why Java?
	The limitations of Java

	The basics of the project
	Ray tracing
	Sequential ray tracing
	Non-sequential ray tracing

	General mechanisms
	The coordinates system
	Elements
	Rays
	Materials

	OpticalElement
	OpticalDevice
	RayPoint
	Ray
	RayCaster
	Material
	Parameter

	Details of the program's functionalities
	Elements and devices
	Materials and parameters
	Propagation
	Drawing
	Integration with AWT

	Using the program
	The main objects
	The main window
	Construction of the OpticalDevice
	The control pane
	Interaction with the controls
	Additional features
	DeviceSwitcher
	Nothing

	The tutorials
	Field lens
	Aspherical interface
	Achromat

	Outlook
	A few remarks
	Conclusion
	Acknowledgements
	Equations used for refraction
	The aspherical interface
	Equation of the surface
	Intersection of a RayPoint with the surface
	Normal vector to the surface at intersection

	Refractive index formulas
	Constant formula
	Schott formula
	Conrady formula
	Herzberger formula
	Sellmeier 1 formula
	Sellmeier 2 formula
	Sellmeier 3 formula
	Sellmeier 4 formula
	Handbook of Optics 1 formula
	Handbook of Optics 2 formula

	Supporting new controls

